2,760 research outputs found

    Mergers, cooling flows, and evaporation

    Get PDF
    Mergers (the capture of cold gas, especially) can have a profound influence on the hot coronal gas of early-type galaxies and clusters, potentially inducing symptoms hitherto attributed to a cooling flow, if thermal conduction is operative in the coronal plasma. Heat can be conducted from the hot phase into the cold phase, simultaneously ionizing the cold gas to make optical filaments, while locally cooling the coronal gas to mimic a cooling-flow. If there is heat conduction, though, there is no standard cooling-flow since radiative losses are balanced by conduction and not mass deposition. Amongst the strongest observational support for the existence of cooling-flows is the presence of intermediate temperature gas with x-ray emission-line strengths in agreement with cooling-flow models. Here, x-ray line strengths are calculated for this alternative model, in which mergers are responsible for the observed optical and x-ray properties. Since gas around 10(exp 4) K is thermally stable, the cold cloud need not necessarily evaporate and hydrostatic solutions exist. Good agreement with the x-ray data is obtained. The relative strengths of intermediate temperature x-ray emission lines are in significantly better agreement with a simple conduction model than with published cooling-flow models. The good agreement of the conduction model with optical, infrared and x-ray data indicates that significantly more theoretical effort into this type of solution would be profitable

    Comments on "The long-period Galactic Cepheid RS Puppis. I. A geometric distance from its light echoes"

    Full text link
    The luminous Galactic Cepheid RS Puppis is unique in being surrounded by a dust nebula illuminated by the variable light of the Cepheid. In a recent paper in this journal, Kervella et al. (2008) report a very precise geometric distance to RS Pup, based on measured phase lags of the light variations of individual knots in the reflection nebula. In this commentary, we examine the validity of the distance measurement, as well as the reality of the spatial structure of the nebula determined by Feast (2008) based upon the phase lags of the knots. {Kervella et al. assumed that the illuminated dust knots lie, on average, in the plane of the sky (otherwise it is not possible to derive a geometric distance from direct imaging of light echoes). We consider the biasing introduced by the high efficiency of forward scattering. We conclude that most of the knots are in fact likely to lie in front of the plane of the sky, thus invalidating the Kervella et al. result. We also show that the flat equatorial disk structure determined by Feast is unlikely; instead, the morphology of the nebula is more probably bipolar, with a significant tilt of its axis with respect to the plane of the sky. Although the Kervella et al. distance result is invalidated, we show that high-resolution polarimetric imaging has the potential to yield a valid geometric distance to this important Cepheid.Comment: 10 pages, 5 figures, 1 table; accepted by Astronomy & Astrophysic

    A Search for Candidate Light Echoes: Photometry of Supernova Environments

    Get PDF
    Supernova (SN) light echoes could be a powerful tool for determining distances to galaxies geometrically, Sparks 1994. In this paper we present CCD photometry of the environments of 64 historical supernovae, the first results of a program designed to search for light echoes from these SNe. We commonly find patches of optical emission at, or close to, the sites of the supernovae. The color distribution of these patches is broad, and generally consistent with stellar population colors, possibly with some reddening. However there are in addition patches with both unusually red and unusually blue colors. We expect light echoes to be blue, and while none of the objects are quite as blue in V-R as the known light echo of SN1991T, there are features that are unusually blue and we identify these as candidate light echoes for follow-on observations.Comment: 13 pages, Latex, 5 Postscript Tables, 42 Postscript figures, accepted for publication in the A&AS. Figures 1 through 36 are available at the web address: http://www.stsci.edu/~boffi

    IC5063: A merger with a hidden luminous active nucleus

    Get PDF
    IC5063 is a nearby galaxy classified as an SO and containing a system of dust lanes parallel to its major optical axis (Danziger, Goss and Wellington, 1981; Bergeron, Durret and Boksenberg, 1983). Extended emission line regions with high excitation properties have been detected over distances of up to 19 kpc from the nucleus. This galaxy has been classified as Seyfert 2 on the basis of its emission line spectrum. These characteristics make IC5063 one of the best candidates for a merger remnant and an excellent candidate for a hidden luminous active nucleus. Based on new broad and narrow band images and long-slit spectroscopy obtained at the ESO 3.6 m telescope, the authors present some preliminary results supporting this hypothesis

    Dust and ionized gas in active radio elliptical galaxies

    Get PDF
    The authors present broad and narrow bandwidth imaging of three southern elliptical galaxies which have flat-spectrum active radio cores (NGC 1052, IC 1459 and NGC 6958). All three contain dust and extended low excitation optical line emission, particularly extensive in the case of NGC 1052 which has a large H alpha + (NII) luminosity. Both NGC 1052 and IC 1459 have a spiral morphology in emission-line images. All three display independent strong evidence that a merger or infall event has recently occurred, i.e., extensive and infalling HI gas in NGC 1052, a counter-rotating core in IC 1459 and Malin-Carter shells in NGC 6958. This infall event is the most likely origin for the emission-line gas and dust, and the authors are currently investigating possible excitation mechanisms (Sparks et al. 1990)

    Will Jets Identify the Progenitors of Type Ia Supernovae?

    Full text link
    We use the fact that a Type Ia supernova has been serendipitously discovered near the jet of the active galaxy 3C 78 to examine the question of whether jets can enhance accretion onto white dwarfs. One interesting outcome of such a jet-induced accretion process is an enhanced rate of novae in the vicinity of jets. We present results of observations of the jet in M87 which appear to have indeed discovered 11 novae in close proximity to the jet. We show that a confirmation of the relation between jets and novae and Type Ia supernovae can finally identify the elusive progenitors of Type Ia supernovae.Comment: 10 pages, 3 figure

    The Palaeoecology of the Interglacial Deposits at Histon Road, Cambridge

    Get PDF
    Von den interglazialen Schichten in Histon Road, Cambridge, ist ein 8-m-Kern gewonnen worden. Er gestattete eine genaue Untersuchung der Pflanzen- und der Land- und Süßwasser-Molluskenreste. Die betreffenden Schichten gehören der Zone g der letzten Interglazialzeit und der Zone h-i an: letzteres Symbol soll andeuten, daß, obwohl die Kontinuität der Schichten nicht unterbrochen ist, die Picea-Zone, h, in diesem einzigen in Großbritannien bekannten Ausschnitt aus diesem Teil der letzten Interglazialzeit fehlt. Von Zone f ist keine Spur gefunden worden. Um ein Bild von der Paläoökologie zu bekommen, wurden die makroskopischen Pflanzenreste und Mollusken aus 41 Teilstücken inventarisiert, von denen jedes durchschnittlich 15 cm Länge hätte. Etwa 3000 Früchte und Samen und 16000 Mollusken wurden gefunden. Diese sind in ökologische und klimatische Verteilungsgruppen eingeteilt worden. Die Bedeutung der Variationen innerhalb dieser Gruppen wird behandelt. Die Pflanzenreste und Mollusken scheinen ein einheitliches Bild von einem Zustand zu bieten, der vom Sumpf bis zum fließenden Gewässer variiert, wie es von einem aufschüttend mäandrierenden Flusse zu erwarten ist.researc

    Morphology of the Nuclear Disk in M87

    Get PDF
    A deep, fuly sampled diffraction limited (FWHM ~ 70 mas) narrow-band image of the central region in M87 was obtained with the Wide Filed and Planetary Camera 2 of the Hubble Space Telescope using the dithering technique. The H-alpha+[NII] continuum subtracted image reveals a wealth of details in the gaseous disk structure described earlier by Ford et al. (1994). The disk morphology is dominated by a well defined three-arm spiral pattern. In addition, the major spiral arms contain a large number of small "arclets" covering a range of sizes (0.1-0.3 arcsec = 10-30 pc). The overall surface brightness profile inside a radius ~1.5" (100 pc) is well represented by a power-law I(mu) ~ mu^(-1.75), but when the central ~40 pc are excluded it can be equally well fit by an exponential disk. The major axis position angle remains constant at about PA_disk ~ 6 deg for the innermost ~1", implying the disk is oriented nearly perpendicular to the synchrotron jet (PA_jet ~ 291 deg). At larger radial distances the isophotes twist, reflecting the gas distribution in the filaments connecting to the disk outskirts. The ellipticity within the same radial range is e = 0.2-0.4, which implies an inclination angle of i~35 deg. The sense of rotation combined with the dust obscuration pattern indicate that the spiral arms are trailing.Comment: 5 pages, 3 postscript figures, to appear in the Proceedings of the M87 Workshop, Ringberg castle, Germany, 15-19 Sep 1997, also available from http://jhufos.pha.jhu.edu/~zlatan/papers.htm

    Polarization Diagnostics for Cool Core Cluster Emission Lines

    Get PDF
    The nature of the interaction between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of galaxy clusters remains a puzzle. The presence of a strong, empirical correlation between the two gas phases is indicative of a fundamental relationship between them, though as yet of undetermined cause. The cooler filaments, originally thought to have condensed from the hot gas, could also arise from a merger or the disturbance of cool circumnuclear gas by nuclear activity. Here, we have searched for intrinsic line emission polarization in cool core galaxy clusters as a diagnostic of fundamental transport processes. Drawing on developments in solar astrophysics, direct energetic particle impact induced polarization holds the promise to definitively determine the role of collisional processes such as thermal conduction in the ISM physics of galaxy clusters, while providing insight into other highly anisotropic excitation mechanisms such as shocks, intense radiation fields, and suprathermal particles. Under certain physical conditions, theoretical calculations predict of the order of 10% polarization. Our observations of the filaments in four nearby cool core clusters place stringent upper limits ( 0.1%) on the presence of emission line polarization, requiring that if thermal conduction is operative, the thermal gradients are not in the saturated regime. This limit is consistent with theoretical models of the thermal structure of filament interfacesPeer reviewe

    Magnon Mediated Electric Current Drag Across a Ferromagnetic Insulator Layer

    Full text link
    In a semiconductor hererostructure, the Coulomb interaction is responsible for the electric current drag between two 2D electron gases across an electron impenetrable insulator. For two metallic layers separated by a ferromagnetic insulator (FI) layer, the electric current drag can be mediated by a nonequilibrium magnon current of the FI. We determine the drag current by using the semiclassical Boltzmann approach with proper boundary conditions of electrons and magnons at the metal-FI interface.Comment: 13 pages, 2 figures: to appear in PR
    • …
    corecore